

Intel(R) Threading Building Blocks

Getting Started Guide

Intel® Threading Building Blocks is a runtime-based parallel programming model for
C++ code that uses threads. It consists of a template-based runtime library to help
you harness the latent performance of multicore processors. Use Intel® Threading
Building Blocks to write scalable applications that:

• specify tasks instead of threads

• emphasize data parallel programming

• take advantage of concurrent collections and parallel algorithms

This guide provides a complete example that uses Intel® Threading Building Blocks to
write, compile, link, and run a parallel application. The example shows you how to
explore a key feature of the library and to successfully build and link an application.
After completing this guide, you should be ready to write and build your own code
using Intel® Threading Building Blocks.

Contents

Disclaimer and Legal Information..2

1 Note Default Directory Paths...3

2 Register Environment Variables (Linux* and Mac OS* X only)4

3 Develop an Application Using parallel_for ...5

4 Build the Application..9

5 Run the Application ...11

6 Next Steps...12

Intel(R) Threading Building Blocks

2 Document Number: 314904-001US

Disclaimer and Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL(R) PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY
APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR
DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be
obtained by calling 1-800-548-4725, or by visiting Intel's Web Site.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor
family, not across different processor families. See http://www.intel.com/products/processor_number for details.

MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of MPEG CODECs, or
MPEG enabled platforms may require licenses from various entities, including Intel Corporation.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Atom Inside, Centrino Inside, Centrino logo, Core
Inside, FlashFile, i960, InstantIP, Intel, Intel logo, Intel386, Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Atom
Inside, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge,
Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, Itanium, Itanium
Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium Inside, skoool, Sound Mark, The Journey Inside, Viiv Inside,
vPro Inside, VTune, Xeon, and Xeon Inside are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright (C) 2005 - 2008, Intel Corporation. All rights reserved.

Revision History

Document
Number

Revision
Number

Description Revision Date

314904-001 001 Applied new template. August 2006

 002 Updated legal disclaimer. May 2008

Note Default Directory Paths

Getting Started Guide 3

1 Note Default Directory Paths

Before you begin, make sure you have successfully installed Intel® Threading Building
Blocks on your machine. Otherwise, install it according to the instructions in
INSTALL.txt.

The default locations for the bin, doc, and examples directories used in this document
are shown in the following table:

Platform Default Directories

Linux∗ /opt/intel/tbb/<version>/[bin|doc|examples]

Mac OS∗ X /Library/Frameworks/Intel_TBB.framework/Versions/<version>/[bin|doc|examples]

Windows∗ with
Intel® IA-32
processor

C:\Program Files\Intel\TBB\<version>\[doc|examples]

Windows∗ with
Intel® 64
Instruction Set
Architecture
(ISA)

C:\Program Files (x86)\Intel\TBB\<version>\[doc|examples]

Intel(R) Threading Building Blocks

4 Document Number: 314904-001US

2 Register Environment Variables
(Linux* and Mac OS* X only)

Before using Intel® Threading Building Blocks, you must register the environment
variables that are used to locate necessary library and include files as follows:

1. Locate the configuration scripts for your operating system. The scripts are located
in the bin directory.

2. Execute the appropriate scripts for your operating system. On Linux* and Mac
OS* X Systems, from the bin directory, source the tbbvars.[c]sh script. These
scripts modify the paths held by the LD_LIBRARY_PATH, DYLD_LIBRARY_PATH (Mac
OS* X), and CPATH variables, and affect only your current shell.

Develop an Application Using parallel_for

Getting Started Guide 5

3 Develop an Application Using
parallel_for

This section presents a basic example that uses the parallel_for template in a
substring matching program. For each position in a string, the program displays the
length and location of the largest matching substring elsewhere in the string.

Consider the string “babba” as an example. Starting at position 0, “ba” is the largest
substring with a match elsewhere in the string (position 3).

You can refer to a complete version of this program in the Intel® Threading Building
Blocks examples/GettingStarted folder. Or you can follow the step-by-step
development of this application given here. In this section, new code that is added in
each step is shown in blue. Code that is carried over from a previous step is shown in
black. Lines are numbered in the order they appear in the final completed example.

To develop the example code:

1. Create a new empty application.
In the main function, initialize the task scheduler by instantiating a
task_scheduler_init object (line 37).
⎯ Any thread that uses an Intel® Threading Building Blocks algorithm must

have an initialized task_scheduler_init object. In this example, the default
constructor for the task_scheduler_init object informs the task scheduler
that the thread is participating in task execution, and the destructor informs
the scheduler that the thread no longer needs the scheduler.

⎯ The definition for the task_scheduler_init class is included from the
task_scheduler_init.h header file (line 04).

⎯ The using statement imports the namespace tbb, in which all of the library’s
classes and functions are found (line 07).

04: #include “tbb/task_scheduler_init.h”

07: using namespace tbb;

36: int main() {

37: task_scheduler_init init;

47: return 0;

48: }

2. Create the example string that is transformed by the program (lines 38 - 40) and
the arrays for holding the lengths of the largest matched substrings and their
locations (lines 41 - 42).

Intel(R) Threading Building Blocks

6 Document Number: 314904-001US

The example generates a Fibonacci string consisting of a series of ‘a’ and ‘b’
characters.

3. Add statements to output the lengths and locations of the largest substring
matches for each position (lines 45 - 46).

01: #include <iostream>
02: #include <string>

04: #include "tbb/task_scheduler_init.h"

07: using namespace tbb;
08: using namespace std;

09: static const size_t N = 23;

36: int main() {

37: task_scheduler_init init;

38: string str[N] = { string("a"), string("b") };

39: for (size_t i = 2; i < N; ++i) str[i] = str[i-1]+str[i-2];

40: string &to_scan = str[N-1];

41: size_t *max = new size_t[to_scan.size()];

42: size_t *pos = new size_t[to_scan.size()];

43—44: // will add code to populate max and pos here

45: for (size_t i = 0; i < to_scan.size(); ++i)

46: cout << " " << max[i] << "(" << pos[i] << ")" << endl;

47: return 0;

48: }

4. Add a call to the parallel_for template function (lines 43 - 44).
The first parameter of the call is a blocked_range object that describes the
iteration space.
blocked_range is a template class provided by the Intel® Threading Building
Blocks library. The constructor takes three parameters:
⎯ The lower bound of the range.
⎯ The upper bound of the range.
⎯ The <grainsize>. The parallel_for subdivides the range into sub-ranges that

have approximately <grainsize> elements.

The second parameter to the parallel_for function is the function object to be
applied to each subrange.

01: #include <iostream>

02: #include <string>

04: #include “tbb/task_scheduler_init.h”

05: #include “tbb/parallel_for.h”

06: #include “tbb/blocked_range.h”

Develop an Application Using parallel_for

Getting Started Guide 7

07: using namespace tbb;

08: using namespace std;

09: static const size_t N = 23;

36: int main() {

37: task_scheduler_init init;

38: string str[N] = { string(”a”), string(”b”) };

39: for (size_t i = 2; i < N; ++i) str[i] = str[i-1]+str[i-2];

40: string &to_scan = str[N-1];

41: size_t *max = new size_t[to_scan.size()];

42: size_t *pos = new size_t[to_scan.size()];

43: parallel_for(blocked_range<size_t>(0, to_scan.size(), 100),

44: SubStringFinder(to_scan, max, pos));

45: for (size_t I = 0; I < to_scan.size(); ++i)

46: cout << ” ” << max[i] << ”(” << pos[i] << ”)” << endl;

47: return 0;

48: }

5. Implement the body of the parallel_for loop (lines 10 – 35).
At runtime, the template parallel_for automatically divides the range into
subranges and invokes the SubStringFinder function object on each subrange.

6. Define the class SubStringFinder (line 10) to populate the max and pos array
elements found within the given subrange.
At line 16, the call r.begin() returns the start of the subrange and the r.end()
method returns the end of the subrange.
01: #include <iostream>

02: #include <string>

03: #include <algorithm>

04: #include “tbb/task_scheduler_init.h”

05: #include “tbb/parallel_for.h”

06: #include “tbb/blocked_range.h”

07: using namespace tbb;

08: using namespace std;

09: static const size_t N = 23;

10: class SubStringFinder {

11: const string str;

12: size_t *max_array;

13: size_t *pos_array;

14: public:
15: void operator() (const blocked_range<size_t>& r) const {

16: for (size_t I = r.begin(); I != r.end(); ++I) {

Intel(R) Threading Building Blocks

8 Document Number: 314904-001US

17: size_t max_size = 0, max_pos = 0;

18: for (size_t j = 0; j < str.size(); ++j)
19: if (j != i) {

20: size_t limit = str.size()-max(I,j);

21: for (size_t k = 0; k < limit; ++k) {

22: if (str[I + k] != str[j + k]) break;

23: if (k > max_size) {

24: max_size = k;

25: max_pos = j;

26: }

27: }

28: }
29: max_array[i] = max_size;

30: pos_array[i] = max_pos;

31: }

32: }

33: SubStringFinder(string &s, size_t *m, size_t *p) :

34: str(s), max_array(m), pos_array(p) { }

35: };

36—48: // The function main starting at line 36 goes here

Build the Application

Getting Started Guide 9

4 Build the Application

Intel® Threading Building Blocks is compatible with the GCC* and Microsoft
compilers. This section assumes that you are using the Intel® C++ Compiler. You can
use the GCC or Microsoft C++ compilers interchangeably in the directions given
below.

Building Code from the Examples Directory

If you did not type the example in Develop an Application Using parallel_for,
build from the completed source code provided in the examples/GettingStarted
folder.

Linux* or Mac OS* X Systems

1. cd to the examples/GettingStarted/sub_string_finder directory.

2. Type “make” to build and run the example.

Windows* Systems

NOTE: This section uses Visual Studio* .NET* 2003 (vc7.1\) but you can use Visual Studio
2005 by replacing vc7.1\ with vc8\.

1. Invoke Visual Studio on the
examples\GettingStarted\sub_string_finder\vc7.1\sub_string_finder.sln
file using one of the following methods:
⎯ Browse to the directory containing sub_string_finder.sln and double-click

the file.
⎯ Invoke Visual Studio from the Start menu, and then open the

sub_string_finder.sln file via File Open Open Project.

2. Press <Ctrl-F5> to build and run the example.

Building Manually Typed Code

If you manually typed the code provided in Develop an Application Using
parallel_for, build your application by invoking the appropriate compiler directly:

Linux* or Mac OS* X Systems

Use the command line:

icc sub_string_finder.cpp –ltbb

Intel(R) Threading Building Blocks

10 Document Number: 314904-001US

Windows* Systems from the Command Line

From within the Intel® C++ Compiler build environment issue the following
command:

icl /MD sub_string_finder.cpp tbb.lib

Run the Application

Getting Started Guide 11

5 Run the Application

To run the application you built:

1. Run the application as you would normally. When run, the program outputs a long
list of length and location pairs.

2. Optionally, to compare the performance of this example to a sequential version,
you can build and run the extended version of the SubStringFinder example
located in the Intel® Threading Buildings Blocks examples/GettingStarted folder
as sub_string_finder_extended.cpp. This extended example calculates and
displays the speedup obtained by using Intel® Threading Building Blocks to
parallelize the algorithm compared to performing the same work sequentially.

Intel(R) Threading Building Blocks

12 Document Number: 314904-001US

6 Next Steps

To get the most out of the Intel® Threading Building Blocks library, explore the
following additional resources.

1. Tutorial is a document that walks you through the major classes, algorithms and
concepts used by Intel® Threading Building Blocks. This document is available in
the doc directory as Tutorial.pdf.

2. Reference is a complete, detailed reference manual for all the functions and
interfaces provided by Intel® Threading Building Blocks. It is available in the doc
directory as Reference.pdf.

3. Examples includes a collection of example programs that demonstrate the
various features of Intel® Threading Building Blocks. These programs are located
within the examples directory. A good place to start is with the extended version
of the SubStringFinder example presented in this Getting Started Guide. This
extended example is found in the examples/GettingStarted/sub_string_finder
subdirectory as sub_string_finder_extended.cpp. When run, it calculates and
displays the speedup obtained by using Intel® Threading Building Blocks to
parallelize the algorithm compared to performing the same work sequentially.

4. Doxygen includes documentation that was automatically generated from the
comments in the Intel® Threading Building Blocks include files. The Doxygen
subdirectory is found within the doc directory. The files in the Doxygen directory
are in HTML format and are viewable with any browser that supports HTML.

	Contents
	Disclaimer and Legal Information
	Revision History
	1 Note Default Directory Paths
	2 Register Environment Variables (Linux* and Mac OS* X only)
	3 Develop an Application Using parallel_for
	4 Build the Application
	Building Code from the Examples Directory
	Building Manually Typed Code
	5 Run the Application
	6 Next Steps

